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The retrograde propagation mechanism of critical thermal convection with a sectorial
pattern emerging in a slowly rotating spherical shell is investigated through vorticity
budget analysis. In the equatorial region, stretching and shrinking of the fluid columns
in the direction of the axis of rotation due to the radial component of velocity
causes retrograde propagation, whereas in the mid-latitudes, tilting of the radial
component of planetary vorticity by the radial shear of the latitudinal component
of velocity is dominant. The switching of the propagating direction from retrograde
to prograde according to the increase in the rotation speed of the shell originates
from the transition of the morphology of vortices from the ‘banana-shaped’ type
due to the constraint of the spherical geometry to the columnar type due to the
Taylor–Proudman constraint. The variation of the morphology of vortices reverses the
tendency of stretching/shrinking of fluid columns accompanied by their cylindrically
radial displacement.
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1. Introduction
The problems associated with Boussinesq thermal convection in rotating spherical

shells have been studied for approximately 50 years with respect to applications to
the internal fluid motions of the celestial bodies (e.g. Chandrasekhar 1961; Roberts
1968; Busse 1970a , b). The set-up of the model is the simplest physical configuration
including essential elementary processes of thermal convection in the stellar and
planetary interiors. In particular, the primary focus has been on thermal convection
in rapidly rotating shells relevant to geophysical applications due to the smallness
of the diffusivities of the fluid constituent. Based on the recent developments in
computational facilities, the characteristics of critical thermal convection in rapidly
rotating spheres and spherical shells have been widely realized. Numerical studies by
Zhang & Busse (1987) and Zhang (1992) have revealed that the emergence of local
two-dimensional Taylor columns elongated in the direction of the axis of rotation,
as revealed by the pioneering study of Busse (1970b), occurs in a limited range
of Prandtl numbers. Taylor columns locally emerge when the Prandtl number is
larger than O(1) (columnar convection), whereas when the Prandtl number is equal
to or less than O(1), Taylor columns do not localize, but rather extend spirally in
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the cylindrically radial direction (spiraling-columnar convection). When the Prandtl
number is decreased further, an equatorially wall-attached structure appears as a
critical mode (wall-attached convection). Based on these results, Busse’s asymptotic
theory has been re-examined (Yano 1992; Jones, Soward & Mussa 2000; Dormy et al.
2003), and physical interpretations of spiraling (Takehiro 2008) and wall-attached
structures (Zhang 1993, 1994) have been presented.

The columnar and spiraling-columnar convection emerging in rapidly rotating
shells propagates in the prograde direction. This characteristic originates from the
topographic β effect (e.g. Busse 1986; Hirsching & Yano 1994; Takehiro 2008).
On the other hand, the pattern of critical convection propagates in the retrograde
direction when the rotation rate of the shell is sufficiently small. A pioneering study
by Busse (1970a) expanded the governing equations by the small Coriolis parameter
and showed the retrograde propagation from the first order of the expansion. Busse
(1973) then revealed that their previous analysis was correct only in the limit of
zero Prandtl number or for thin shells. The perturbation calculation in the limit
of the small rotation rate was performed by Geiger & Busse (1981). They showed
that the solution described by sectorial spherical harmonics Y l

l appears as a critical
mode, except for cases involving large Prandtl numbers and thick shells, and obtained
an accurate expression of retrograde propagation frequency. Zhang & Busse (1987)
performed numerical calculations of critical convection for the case of a radius ratio
of 0.4 and found that the transition from retrograde to prograde propagation occurs
around a Taylor number of T = 104 when the Prandtl number is larger than or
equal to O(1), whereas this transition occurs at a larger Taylor number when the
Prandtl number is smaller than O(1). Takehiro & Hayashi (1995) confirmed a similar
transition of the propagation direction for various values of the radius ratio.

However, in contrast to the case of rapidly rotating spherical shells, there appears
to be no satisfactory physical explanation of the retrograde propagation occurring in
slowly rotating shells, although the asymptotic analytical expression of the solution
is completely solved. For example, certain studies have interpreted the retrograde
propagating solution as two-dimensional barotropic Rossby waves on a rotating
sphere (e.g. Gilman 1975), but this interpretation is misleading because the vortex
tubes of the critical convection in slowly rotating shells elongate along the spherical
shell, and the radial component of vorticity is relatively small. The radial component
of vorticity is proportional to the first-order magnitude of the square root of the
Taylor number in the asymptotic expansion in the limit of a small rotation rate
(Busse 1970a; Geiger & Busse 1981).

Therefore, in this paper, we intend to obtain a physical understanding of the
retrograde propagation mechanism of critical convection in slowly rotating shells.
The model of thermal convection in a rotating spherical shell and the numerical
methods are described in § 2. In § 3, a typical structure of retrograde propagation
critical convection in a slowly rotating shell is illustrated and compared with that of
prograde propagating critical convection. In § 4, a budget analysis of the colatitudinal
component of vorticity is performed. Section 5 summarizes the results.

2. Model
Let us consider a spherical shell with inner and outer radii ri and ro rotating

with angular velocity Ω . The shell is filled with a Boussinesq fluid with thermal
expansion coefficient α and kinematic and thermal diffusivities ν and κ , respectively.
The gravitational force −gor/ro is directed towards the centre of the shell, where r is
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the position vector with respect to the centre of the shell, and go is the gravitational
acceleration at the outer sphere of the shell. Not only the fluid but also the inner
sphere contain a homogeneous heat source, and so the temperature gradient at the
static state is given by −βr . Linearized equations for disturbances with respect to the
basic state with no motion and this temperature gradient are as follows:

E

(
∂u
∂t

− ∇2u
)

+ 2k × u + ∇p = R
r
ro

Θ, (2.1)

∂Θ

∂t
− u · r =

1

P
∇2Θ, (2.2)

∇ · u = 0, (2.3)

where u is the velocity, Θ is the temperature disturbance, p is the pressure and k
is the unit vector in the direction of the axis of rotation. These equations are non-
dimensionalized using the thickness of the shell D = ro − ri as the length scale, the
viscous diffusion time D2/ν as the time scale, βD2 as the temperature scale and ρνΩ

as the pressure scale, where ρ is the mean density of the fluid. The non-dimensional
parameters appearing in the following equations:

R =
αgoβD3

νΩ
, E =

ν

ΩD2
, P =

ν

κ
(2.4)

are the modified Rayleigh number, the Ekman number, and the Prandtl number,
respectively. The boundary conditions are the impermeable, free-slip and fixed-
temperature conditions:

r · u =
∂

∂r

(u × r
r2

)
= Θ = 0 at r =

η

1 − η
,

1

1 − η
, (2.5)

where η = ri/ro is the ratio of the inner and outer radii.
We first obtain representative critical convection solutions for both slowly and

rapidly rotating cases. The actual numerical calculations are performed using the
equations described by the toroidal and poloidal potentials. The variables that appear
in the equations are expanded with spherical harmonic functions in the horizontal
direction and Chebyshev polynomials in the radial direction. This set of equations
constitutes a linear eigenvalue problem for each azimuthal (longitudinal) wavenumber.
Selecting the values of the Prandtl number, the Ekman number and the radius ratio,
the neutral Rayleigh number giving zero growth rate for each azimuthal wavenumber
is searched by solving the eigenvalue problem iteratively. We then find the critical
Rayleigh number, the frequency, and the azimuthal wavenumber. The spherical
harmonic functions and Chebyshev polynomials are calculated up to 40th latitudinal
wavenumber and the 32nd degree, respectively.

For the cases of slow rotation rates, the values of the Ekman number, the Prandtl
number and the radius ratio of the inner and outer radii are varied in the ranges
of E = 0.1–10, P = 10−2–102 and η = 0.4–0.8, respectively. The critical convection at
E = 10−2, P = 1 and η = 0.4 is also presented as a rapidly rotating case for comparison.

The validity of the programme is checked by comparing the numerical results with
the analytic expression of the stress-free cases with η = 0.2 and 0.3 in Geiger & Busse
(1981). The values of the Rayleigh number and the frequency coincided with each
other to four and three significant digits, respectively, in the ranges of E = 1–102 and
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Figure 1. Typical structure of critical thermal convection in a slowly rotating spherical shell.
η = 0.4, E = 0.1, P =1 and R = 114.854. The pattern propagates in the retrograde direction
with a frequency of 2.13544. (a) The temperature field (contours) at the middle of the shell
(r =1.0), and the velocity field (arrows) in the upper level (r = 1.2). (b) Meridional cross-section
where the temperature field is maximum in the azimuthal direction. The contours and arrows
indicate the temperature and velocity fields, respectively. (c) The equatorial cross-section. The
contours and arrows indicate the temperature and velocity fields, respectively.

P = 0.1–10. Moreover, the critical Rayleigh number in the case of E = 104, P = 1 and
η = 0.4 accurately converged to the value of the non-rotating case to four significant
digits.

3. Critical modes of thermal convection
Figure 1 shows a representative structure of critical thermal convection for the

case of slow rotation with the parameters of η = 0.4, E = 0.1, P =1 and R = 114.854.
The pattern propagates in the retrograde direction with a frequency of 2.13544. As
described by Geiger & Busse (1981), the temperature and radial velocity fields consist
of the sectorial spherical harmonic function Y 3

3 (figure 1a). The horizontal velocity
field in an upper layer is converging on the equatorial minimum of the temperature
field and is diverging from the equatorial maximum. A meridional cross-section reveals
that the vortex tube is not elongated in the direction of the axis of rotation but bends
along the spherical shell (figure 1b). Based on the equatorial cross-section, the vortex
tubes have symmetric properties with respect to the longitudinal and radial directions,
similar to the structure in no-rotation cases (figure 1c).

In contrast to figure 1, figure 2 illustrates a representative structure of critical
thermal convection in the case of rapid rotation with the parameters of η = 0.4,
E = 10−2, P = 1 and R = 31.5121. The pattern propagates in the prograde direction
with a frequency of 11.0877. The equatorially symmetric vortex pairs can be observed
in the velocity field on a spherical surface, suggesting the existence of the Taylor-
columnar structure (figure 2a). In a meridional cross-section, a vortex column
elongated in the direction of the axis of rotation is distorted by the outer spherical
surface (figure 2b). The vortex tubes observed in the equatorial cross-section tilt in
the prograde-outward direction, which appears to be in the direction of the spiraling-
columnar convection (figure 2c).

Figure 3 shows an overhead view of the vortex tubes described by the contour
surfaces of the absolute value of vorticity. In a slowly rotating case, the vortex tubes
bend along the spherical shell and constitute a banana-shaped structure. On the other
hand, in a rapidly rotating case, vortex tubes are elongated in the direction of the
axis of rotation, forming a Taylor-columnar structure.



On the retrograde propagation of critical thermal convection 509

(a) (b) (c)
80

40

0

0 100 200 300

L
at

it
ud

e

Longitude

–40

–80

0.
04

0.03

0.02 0.01

0.
00

0.00

0.00

0.024

0.024

0.024 0.024

0.
02

4

0.024

0.00

0.00

Figure 2. Typical structure of critical thermal convection in a rapidly rotating spherical shell.
η = 0.4, E = 10−2, P = 1 and R = 31.5121. The pattern propagates in the prograde direction with
a frequency of 11.0877. (a) The temperature field (contours) at the middle of the shell (r = 1.0),
and the velocity field (arrows) in the upper level (r = 1.2). (b) A meridional cross-section where
the temperature field is maximum in the azimuthal direction. The contours and arrows indicate
the temperature and velocity fields, respectively. (c) The equatorial cross-section. The contours
and arrows indicate the temperature and velocity fields, respectively.

(a) (b)

Figure 3. Comparison of the morphology of vortices between the cases with slow and rapid
rotation rates. The contour surfaces of the absolute value of vorticity are observed obliquely
from above. White and black surfaces indicate positive and negative colatitudinal components
of vorticity, respectively. (a) The slow-rotation case (corresponding to figure 1). (b) The
rapid-rotation case (corresponding to figure 2).

4. Budget analysis of the vorticity equation
In the previous section, we have observed that the vortex tubes of critical convection

in the slowly rotating case bend along the spherical shell and elongate in the latitudinal
direction. Therefore, it is appropriate to examine the colatitudinal component of
vorticity in order to capture the physical properties of critical convection in a slowly
rotating spherical shell. The equation for the time development of the colatitudinal
component of vorticity is obtained by operating ∇× to (2.1):

∂ωθ

∂t
=

2

E

(
−sin θ

r

∂uθ

∂θ
− ur sin θ

r
+ cos θ

∂uθ

∂r

)
+

R

Ero

1

sin θ

∂Θ

∂φ

+

[
∇2ωθ − 2 cos θ

r2 sin θ2

∂ωφ

∂φ
+

2

r2

∂ωr

∂θ
− ωθ

r2 sin2 θ

]
, (4.1)



510 S. Takehiro

(2/E) sin θ

(2/E) cos θ

(2/E) sin θ

uθ (θ)

uθ (r)

uθ (θ + �θ) ur (θ + �θ)

uθ (r + �r)

r
θ

r
θ r

θ

ur (θ – �θ)
Stretching

Stretching Tilting
(a) (b) (c)

Figure 4. Physical meanings of the terms in the equation of the colatitudinal component
of vorticity given by (4.1). (a) Stretching and shrinking of the colatitudinal component of
planetary vorticity by the divergence and convergence of the colatitudinal component of
velocity, −(2/E)(sin θ/r)(∂uθ/∂θ ). (b) Stretching and shrinking of the colatitudinal component
of planetary vorticity by the radial component of velocity, −(2/E)(ur sin θ/r). (c) Tilting of
the radial component of planetary vorticity by the radial shear of the colatitudinal component
of velocity, (2/E) cos θ (∂uθ/∂r).
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Figure 5. Distribution of each term in the equation of the colatitudinal component of vorticity
given by (4.1) for the critical thermal convection in the slowly rotating spherical shell shown
in figure 1. The equatorial cross-sections are shown. Only the regions between the azimuthal
angles of 0◦ and 120◦ are presented, because the azimuthal wavenumber of the solution is three.
Solid and broken contour lines indicate positive and negative values, respectively. (a) Temporal
variation of the colatitudinal component of vorticity, ∂ωθ/∂t . (b) Stretching and shrinking of
the colatitudinal component of planetary vorticity by the divergence and convergence of the
colatitudinal component of velocity, −(2/E)(sin θ/r)(∂uθ/∂θ ). (c) Stretching and shrinking
of the colatitudinal component of planetary vorticity by the radial component of velocity,
−(2/E)(ur sin θ/r). (d ) Tilting of the radial component of planetary vorticity by the radial
shear of the colatitudinal component of velocity, (2/E) cos θ (∂uθ/∂r). This term is exactly zero
on the equatorial plane. (e) Generation by the azimuthal temperature gradient and the viscous
dissipation of the colatitudinal component of vorticity.

where φ and θ denote azimuth and colatitude, respectively. Here, ∇ × u =ω =
(ωr, ωθ , ωφ) and u = (ur, uθ , uφ) are the vorticity and velocity components, respectively.
The first and second terms, which are proportional to (2/E) in the right-hand side
of (4.1), denote the variation of the colatitudinal component of relative vorticity
through stretching and shrinking the colatitudinal component of planetary vorticity
(figures 4a and 4b). The third term, which is proportional to (2/E), indicates that
the colatitudinal component of relative vorticity varies through tilting of the radial
component of planetary vorticity by the radial shear of the colatitudinal velocity
(figure 4c). The term that is proportional to the temperature gradient in the right-
hand side of (4.1) represents the generation of vorticity by the buoyancy force, and
the final terms represent the viscous dissipation of vorticity.

Figure 5 shows the distribution on the equatorial cross-section of each term
in the equation of the colatitudinal component of vorticity given by (4.1) for
the critical thermal convection in the slowly rotating spherical shell presented in
figure 1. In the right-hand side of (4.1), the dominant term is −(2/E)(sin θ/r)(∂uθ/∂θ)
(figure 5b). However, the distribution of the dominant term is not consistent with
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Figure 6. Distribution of each term in the equation of the colatitudinal component of vorticity
given by (4.1) for the critical thermal convection in the slowly rotating spherical shell shown in
figure 1. The conical surfaces at 45◦ colatitude are shown. Only the regions between azimuthal
angles of 0◦ and 120◦ are presented, because the azimuthal wavenumber of the solution is three.
Solid and broken contour lines indicate positive and negative values, respectively. (a) ∂ωθ/∂t .
(b) −(2/E)(sin θ/r)(∂uθ/∂θ ). (c) −(2/E)(ur sin θ/r). (d ) (2/E) cos θ (∂uθ/∂r). (e) Generation by
the azimuthal temperature gradient and the viscous dissipation of the colatitudinal component
of vorticity.

the temporal variation of the colatitudinal component of vorticity (figure 5a).
This term is exactly balanced by the vorticity generation and dissipation terms
(figure 5e). Here, (2/E) cos θ(∂uθ/∂r) does not contribute to ∂ωθ/∂t because the
radial component of planetary vorticity vanishes on the equatorial plane (figure 5d ).
As a result, −(2/E)(ur sin θ/r) governs the temporal variation of colatitudinal vorticity
(figure 5c). Therefore, it can be concluded that, in the equatorial region, the retrograde
propagation is caused by stretching and shrinking of the colatitudinal component of
planetary vorticity by the radial component of velocity.

On the other hand, figure 6 shows the distribution on the conical surface at
45◦ colatitude of each term in (4.1) for the same critical thermal convection. In
the right-hand side of (4.1), the dominant term is (2/E) cos θ(∂uθ/∂r) (figure 6d ),
the distribution of which is consistent with ∂ωθ/∂t (figure 6a). This distribution
is weakened by the vorticity generation and dissipation terms (figure 6e) and the
temporal variation of the colatitudinal component of vorticity shown in figure 6(a)
is produced. The contribution of −(2/E)(sin θ/r)(∂uθ/∂θ) and −(2/E)(ur sin θ/r)
is relatively small at mid-latitudes (figures 6b and 6c). Therefore, in contrast to
the equatorial region, the retrograde propagation is caused by tilting of the radial
component of planetary vorticity by the radial shear of the colatitudinal component
of velocity at mid-latitudes.

Figure 7 compares the magnitude of each term in the equation of the colatitudinal
component of vorticity given by (4.1) at E =0.1 and η = 0.4 for various values of
the Prandtl number. The colatitudinal distributions of the terms are plotted at the
azimuthal and radial positions, where the temporal variation of the colatitudinal
component of vorticity becomes maximum on the equatorial plane.

Based on figure 7(b), we can confirm the tendency of the vorticity budget mentioned
above in the case of the Prandtl number P = 1. From the equator to the 60◦ colatitude,
−(2/E)(ur sin θ/r) (short-dashed line) largely contributes to the temporal variation
of the colatitudinal component of vorticity (solid line), whereas at latitudes higher
than 60◦ colatitude, the contribution of (2/E) cos θ(∂uθ/∂r) (long dashed-dotted line)
becomes larger. The term of the generation by the azimuthal temperature gradient
and by the viscous dissipation of the colatitudinal component of vorticity (long
dashed double-dotted line) cancels these terms of the vorticity budget to a certain
extent.

Based on figures 7(a) and 7(c), the tendency of relative amplitude of the terms
of −(2/E)(ur sin θ/r) (short-dashed line) and (2/E) cos θ(∂uθ/∂r) (long dashed-
dotted line) does not change, even when the Prandtl number is varied, namely,
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Figure 7. The comparison of each term in the equation of the colatitudinal component of
vorticity given by (4.1) of the critical thermal convection in a slowly rotating spherical shell at
E =0.1 and η = 0.4 for various values of the Prandtl number. The colatitudinal distribution of
each term is shown at the azimuthal and radial positions, where the temporal variation
of the colatitudinal component of vorticity becomes maximum on the equatorial plane.
The range of the colatitude 0◦ � θ � 90◦ is plotted because all of the terms of the vorticity
budget are equatorially symmetric: (a) P = 0.1, (b) P =1 and (c) P = 10. The solid,
long-dashed, short-dashed, long dashed dotted, and long dashed double-dotted lines indicate
∂ωθ/∂t , −(2/E)(sin θ/r)(∂uθ/∂θ ), −(2/E)(ur sin θ/r), (2/E) cos θ (∂uθ/∂r), and generation by
the azimuthal temperature gradient and the viscous dissipation of the colatitudinal component
of vorticity, respectively. The values are normalized with the amplitude of the largest term at
the equator.

−(2/E)(ur sin θ/r) is larger than (2/E) cos θ(∂uθ/∂r) in the equatorial region, whereas
(2/E) cos θ(∂uθ/∂r) is dominant at mid-latitudes. However, the relative magnitude
of the term of generation and viscous dissipation of the colatitudinal component
of vorticity (long dashed double-dotted line) around the equator changes according
to the Prandtl number. When the Prandtl number becomes large, it cancels the
term of −(2/E)(ur sin θ/r) (short-dashed line) and reduces the temporal variation of
colatitudinal component of vorticity (solid line). On the other hand, when the Prandtl
number is decreased, it enhances the term of −(2/E)(ur sin θ/r) (short-dashed line)
and increases the temporal variation of the colatitudinal component of vorticity (solid
line).

The balance between the vorticity budget terms described above does not change
in the range of the Ekman number 10 � E � 10−1. When the radius ratio is increased
up to η = 0.8, critical convection with the Y l

l type horizontal structure still emerges,
but the horizontal total wavenumber l is increased. The latitudinal extent of critical
convection then becomes smaller, and the colatitudinal distribution of each term of
the vorticity budget concentrates around the equatorial region. However, the tendency
of the balance between the vorticity budget terms is unchanged.

The preliminary analysis also shows that the balance of the vorticity budget terms
remains unchanged, even when the heating mode is changed by internal heating to
radial differential heating. However, for the case of the imposed heat flux condition
instead of the fixed temperature condition, it is difficult to identify the dominant
term that is responsible for the retrograde propagation due to the smallness of
the temporal variation of the colatitudinal component of vorticity. The balance of
vorticity budget terms for the imposed heat flux cases appears to differ from that
for the fixed-temperature cases, possibly because the horizontal structure of critical
convection is extended in the azimuthal direction and a Y 1

1 type structure emerges
under the imposed heat flux condition.
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Figure 8. Schematic diagrams of the propagation mechanism of vortices. (a) Rapidly rotating
case. The vortices propagate in the prograde direction due to shrinking of the fluid columns
accompanied by cylindrical-radially outward flows. (b) Slowly rotating case. The vortices
propagate in the retrograde direction due to stretching of the fluid columns accompanied by
cylindrical-radially outward flows.

5. Summary
We have investigated the retrograde propagation mechanism of critical thermal

convection with a sectorial pattern emerging in a slowly rotating spherical shell
through a vorticity budget analysis. It is revealed that the propagation mechanism
changes depending on the colatitudinal position. In the equatorial region, retrograde
propagation is caused by stretching and shrinking of the colatitudinal component
of planetary vorticity by the radial component of velocity, whereas at mid-latitudes,
retrograde propagation is caused by tilting of the radial component of planetary
vorticity by the radial shear of the colatitudinal component of velocity. The term
of generation and viscous dissipation of the colatitudinal component of vorticity
enhances or reduces these terms to a certain extent depending on the Prandtl
number.

We can understand the switching mechanism of the propagating direction between
slowly and rapidly rotation cases by focusing on the vorticity generation around
the equatorial region. The prograde propagation of vortex columns in rapidly
rotating cases can be explained by the topographic β effect of the outer spherical
boundary, which causes shrinking (stretching) of the fluid columns accompanied by
their cylindrical-radially outward (inward) movement. Due to the conservation of
potential vorticity, when fluid columns are shrunk, they must rotate more slowly
than the shell, thereby inducing negative relative vorticity. On the other hand,
when fluid columns are stretched, they must rotate faster than the shell, inducing
positive relative vorticity. Since positive vorticity columns accompany inward flows
on the prograde side, they propagate in the prograde direction (figure 8a). The
tendency of stretching and shrinking of the fluid columns can be confirmed in
the meridional cross-section shown in figure 2(b). The velocity field converges in
the direction of the axis of rotation associated with the cylindrical-radially outward
component.
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On the other hand, in slowly rotating cases, the vorticity budget analysis performed
in § 4 revealed that stretching and shrinking of the colatitudinal component of
planetary vorticity by the radial component of velocity governs the retrograde
propagation around the equatorial region. Note that the outward radial component
of velocity causes cylindrical-radially outward movement and stretching of the fluid
columns at the same time. The meridional cross-section of the convection structure
in the slowly rotating case shown in figure 1(b) reveals that stretching of the fluid
columns occurs concurrently with their cylindrical-radially outward movement. The
correlation between the stretching/shrinking and outward/inward flows is opposite
to that in the rapidly rotating case, which contributes to the retrograde propagation
(figure 8b).

The difference in the stretching/shrinking tendency originated from the different
alignment direction of the vortex tubes. When the effect of the rotation of the shell
is strong, vortex tubes are elongated along the axis of rotation according to the
Taylor–Proudman constraint. The convergence in the axial direction associated with
the outward fluid motion is due to the distortion of Taylor vortex columns by the
outer spherical surface. On the other hand, when the effect of the rotation of the
shell is sufficiently weak, the vortex tubes tend to be elongated along the spherical
shell and bent into a banana-shaped form. Therefore, divergence in the axial direction
associated with the cylindrical-radially outward fluid motion is induced.

The numerical calculations were performed by the computer systems of the Institute
for Information Management and Communication (IIMC) of Kyoto University. For
the calculation of the critical modes of convection, the library for spectral transform
ISPACK (http://www.gfd-dennou.org/library/ispack/) and its Fortran90 wrapper
library SPMODEL library (Takehiro et al. 2006) were used. The eigenvalue problems
were solved using the subroutine of the Fujitsu SSL II library. The products of the
Dennou Ruby project (http://www.gfd-dennou.org/library/ruby/) were used to draw
the figures.
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